MATHCOUNTS ${ }^{\circ}$) 1 [in $n{ }^{\circ}$ S September 2015 Activity Solutions

Warm-Up!

1. We are told that $x=y+3$ and $y=z-5$, which can be rewritten as $y+5=z$. We are asked to determine the value of $z-x$. Substituting we get $(y+5)-(y+3)=y+5-y-3=5-3=2$.
2. If we subtract from the total the $\$ 30$ charged to hook the car to the tow truck, we see that $59.75-30=\$ 29.75$ was the charge for the mileage. So from the school, Mr. Alman's car was towed $29.75 \div 1.75=17$ miles to his house.
3. From the information given, we can write the following two equations, where x represents the weight of Tweedledee and y is the weight of Tweedledum: $x+2 y=361$ and $2 x+y=362$. Adding the two equations, we get $3 x+3 y=723$. Dividing each side by 3 , we see that the sum of their weights is $x+y=241$ pounds.
4. Since we don't know the dimensions of the rectangle let's call them L and W. We are told that the rectangle has an area of 108 in 2, which means that $L W=108$. We are looking for the new area after the length and width are each increased by 1 . In other words, $(L+1)(W+1)$. If we expand this expression we get $L W+L+W+1$. Well, we know that $L W=108$. We are told that the perimeter of the rectangle is 42 , which means that $2(L+W)=42 \rightarrow L+W=21$. Substituting, we now have $L W+(L+W)+1=108+21+1=130 \mathrm{in}^{2}$.

The Problem is solved in the MATHCOUNTS JJll n in

Follow-up Problems

5. A total of $40 \times 2.15=\$ 86$ would have been paid for the forty bowls of chocolate ice cream. The remaining 158.20-86=\$72.20 would have been paid for bowls of vanilla ice cream. At $\$ 1.90$ per bowl, that would mean $72.20 \div 1.90=38$ bowls of vanilla ice cream were sold. Thus, a total of $40+38=78$ bowls of ice cream were sold.

6a. We are told that the perimeter of the painting is 48 inches. Since adding a frame that results in a one-inch margin around the painting essentially adds an additional 2 inches at each corner of the painting, the outer perimeter of the frame is $48+8=56 \mathrm{in}$.

6b. We are told that the perimeter of the painting is 48 inches. That means $2 L+2 W=48$. As the figure shows, the area of the frame is the sum of the areas of the $1 \times L$ regions at the top and bottom of the painting, the $1 \times W$ regions on either side and the 1×1 regions at each of the four corners. Thus, the area is of the frame is $2 L+2 W+4=48+4=52 \mathrm{in}^{2}$.

7. Let p represent the number of pit bulls, c is the number of chihuahuas and m is the number of mutts. The second sentence of the problem yields the following equations, where A is the total number of dogs: $p=A-23, c=A-17, m=A-28$ and $A=p+c+m$. If we add the first three equations we get $p+c+m=3 A-68$. Substituting, we get $A=3 A-68$. We now solve to determine that the total number of dogs at the pound is $2 A=68 \rightarrow A=34$ dogs.
8. This problem can be solved several ways. First let's solve it algebraically. We are told that Douglas' favorite number is a positive two-digit integer; let's call it $A B$ where A is the tens digit and B is the units digit. That means that the value of his favorite number is $10 A+B$. Then a new number is created, $A B 7$, where A now is the hundreds digit, B now is the tens digit and 7 is the units digit. The value of the new number is $100 \mathrm{~A}+10 \mathrm{~B}+7$. Finally, we are told that the new number is 385 more than Douglas' favorite number. So we have 100A $+10 B+7=10 A+B+385$. Subtracting 10A, B and 7 from both sides yields $90 A+9 B=378$. Dividing both sides by 9 gives us $10 A+B=42$. This is Doug's favorite number.

We could also have solved the problem logically by setting up the vertical addition problem:

$$
\begin{array}{r}
385 \\
+\quad A B \\
\hline A B 7
\end{array}
$$

Notice that $5+B=7$, so B must equal 2 . We can then substitute 2 for B in the problem to get:

$$
\begin{array}{r}
385 \\
+\quad A 2 \\
\hline \text { A27 }
\end{array}
$$

The only integer from 1 to 9 that yields a units digit of 2 when added to 8 is 4 . It follows that:

$$
\begin{array}{r}
385 \\
+\quad 42 \\
\hline 427
\end{array}
$$

Thus, Douglas' favorite number is 42.

